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Water quality estimation in fresh and marine water systems with in situ
above-water spectroscopy requires measurement of the volume reflec-
tance (p,) of water bodies. However, the above-water radiometric
measurements include surface reflection (L,) as a significant component
along with volume reflection. The L, carries no information on water
quality, and hence it is considered as a major source of error in in situ
above-water spectroscopy. Currently, there are no methods to directly
measure L. The common method to estimate L, assumes a constant water
surface reflectance (ps) of 2%, and then subtracts the L, thus calculated
from the above-water radiance measurements to obtain the volume
reflection (Ly). The problem with this method is that the amount of ps
varies with environmental conditions. Therefore, a methodology was
developed in this study for direct measurement of water volume
reflectance above water at nadir view geometry. Other objectives of this
study were to analyze the contribution of L, to the total water reflectance
under various environmental conditions in a controlled setup and to
develop an artificial neural network (ANN) model to estimate ps from
environmental conditions. The results showed that L, contributed 20-54 %
of total upwelling radiance from water at nadir. The p; was highly
variable with environmental conditions. Using sun altitude, wind speed,
diffuse lighting, and wavelength as inputs, the ANN model was able to
accurately simulate ps, with a low root mean square error of 0.003. A
sensitivity analysis with the ANN model indicated that sun altitude and
diffuse light had the highest influence on ps, contributing to over 82% of
predictability of the ANN model. Therefore, the ANN modeling
framework can be an accurate tool for estimating surface reflectance in
applications that require volume reflectance of water.

Index Headings: Above-water spectroscopy; Surface reflectance; Volume
reflectance; Artificial neural networks; ANNs; Water quality; Visible—
near-infrared spectroscopy.

INTRODUCTION

Optical remote sensing is a fast and efficient method for
large-scale monitoring and evaluation of the aquatic environ-
ment. Visible—near-infrared (VNIR) spectroscopy from satel-
lite, air, or water-based platforms can be used for water quality
estimation, particularly of optically active constituents (OAC)
such as sediments and chlorophyll in both marine and fresh
water systems.!? The sensors operating from above-water
platforms record the total upwelling radiance above the water
surface (L), which includes three separate components,
namely, volume reflection (L,), bottom reflection (Ly), and
surface reflection (L,). The volume reflection is the only
component of the total upwelling radiation from water that
carries key information on water quality. The surface reflection
refers to light reflected from the air—water interface, and hence,
it carries no information on water quality, except for conditions
that may affect the surface roughness of the water significantly.
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The Ly component is negligible for deep water bodies and is
usually not an issue for deep parts of lakes and ocean. Since L,
is not useful in water quality estimation, the variation in L, with
environmental conditions can introduce significant errors in
water quality estimations.* Therefore, it is important to
remove the L, from the total upwelling water radiance before
using the above-water radiance data for water quality
estimations.

There are no direct methods for measuring L, or L, from
water bodies with sensors operating from above-water
platforms. The commonly used indirect method for eliminating
L, from the above-water upwelling radiance measurements uses
a correction factor (CF).*>!9 The CF is nothing but the water
surface reflectance, ps, and is defined as the fraction of sky
radiance (Ls) reflected from the air—water interface at any
specific zenith angle (Eq. 1).*>!! The L, can then be calculated
as the product of downwelling sky radiation (L) and ps (Eq. 2)
and subtracted from the total upwelling water radiance to
obtain the volume reflection (L,) of the water body. Since L, is
the total upwelling radiance just under the water surface, and
all radiometric systems used for water quality estimations
operate from above-water platforms, direct under water
measurement of L, is difficult. But, if CF is known, the
volume reflection of water can be estimated indirectly as the
difference between total upwelling radiance measured above
the water surface and the L, estimated as the product of CF and
downwelling sky radiance using Eq. 3:>7

Lr
CF=p,=— 1
P =1 (1)
Lr = Ps X LS (2)
L,=L —L, (3)

where the variables are as follows:

CF = Correction factor at a specific zenith angle, ratio

ps = Surface reflectance at a specific zenith angle, ratio

L, = Surface reflection from water at a specific zenith
angle, W m~2 sterdian™!

Ly = Downwelling sky radiation at a specific zenith angle,
W m~2 sterdian™!

L, = Volume reflection from a water body at a specific
zenith angle, W m~? sterdian™!

L; = Total upwelling radiance above the water surface at a

specific zenith angle, W m~? sterdian~!

Austin'! proposed a CF of 0.02 for marine water systems at
zenith angles of up to 30°, and 0.03 for a zenith angle of 40°.
Arst et al.!? validated that a CF of 0.02 is appropriate for calm
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Fic. 1. Generation of surface reflection in above-water radiometric measure-
ments. Light coming at an incidence angle of 0; reflects from the air—water
interface at angle 6,. Light coming from nadir (L4) with a zero incidence angle
reflects back to nadir from the air—water interface (L) and merges with radiance
coming from under the water surface (L,) to generate the total upwelling
radiance (L;).

water conditions and nadir view. Mobley* suggested a CF of
0.028 for the visible range of wavelengths at wind speeds less
than 5 m/s. However, Mobley* also found that many
environmental variables such as sun altitude and wind velocity,
as well as sensor geometry, affected CF. The CF simulated
with a radiative transfer model developed* for estimating
upwelling water radiance corrected for L, varied from 0.028 to
0.12 in response to sun altitude and wind speed for a sensor
zenith angle of 40° and azimuth angle of 135°.

The constant CF of 0.02 is not very accurate at very high sun
altitude or when there is a significant amount of sun glint.!! In
addition to sun glint, wind speed, diffuse light conditions, sun
altitude, and viewing geometry of the sensor can influence the
L, as well as the CF.>* Doxaran et al.’> found that wavelength
also affected the L,, with L, contributing approximately 50% of
the total upwelling water radiance in the visible range and a
higher percentage in the near-infrared (NIR) range in turbid
water. This study also found that sensor viewing geometry
(zenith angle) did not affect L, which was contradictory to the
findings of Fougnie et al.> and Mobley.*

There are two basic problems in removing the L, from
upwelling water radiance. The first issue is the lack of an
approach for directly measuring volume reflectance, p, of
water directly above the water surface. Second is the
unavailability of an exact CF at specific wavelengths for
different conditions of sun altitude, wind speed, and diffuse
light. The CF of 0.02 suggested by Austin'! and Arst et al.,'?
and 0.028 recommended by Mobley* for visible wavelengths,
can lead to an over- or under-estimation of water reflectance.’
Although fresh water systems are relatively less complex than
marine systems, there is very little information on the CF and
its dynamics with respect to environmental conditions for fresh
water systems.

The goal of this study was to develop a methodology for
direct measurement of volume reflection, L,, from an above-
water platform, and to understand the dynamics of L, from
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Fic. 2. An approach for removal of surface reflection from upwelling water
radiance measured at nadir directly above the water surface by blocking the
light coming from nadir.

fresh water under diurnal and annual variability in factors that
affected CF. The specific objectives of this study were to:

(1) Develop an approach to directly measure upwelling water
volume reflection from an above-water platform.

(2) Understand the contribution of L, to total upwelling water
radiance.

(3) Study the effect of sun altitude, diffuse light conditions,
wind speed, and wavelength on CF.

(4) Develop an ANN model to simulate CF from known
environmental conditions for specific Vis-NIR wavelengths.

MATERIALS AND METHODS

Above-Water Spectral Radiance. This study assumed that
the total upwelling radiance just above the water surface at any
given zenith angle is the sum of the volume reflection of the
water body and the surface reflection from the air—water
interface. The bottom reflection was ignored in this study since
it was a constant and was less than 2% in the Vis-NIR
wavelength range considered here. All other components of
upwelling radiation such as those due to path scattering are
considered negligible since the distance between the sensor and
the water surface was considerably small.

The methodology used in the study also assumed that the
water surface is calm and specular. According to the law of
specular reflection, the angle of incident light (6;) is equal to the
angle of surface reflected light (0,), as indicated in Fig. 1.
Therefore, a sensor oriented at nadir will receive the surface
reflected component (L;) of downwelling radiation from nadir
and the volume reflection coming from under the water surface
(Ly). Only the L, component of the upwelling light carries
information on water quality. By placing a metal sheet directly
above the sensor to block the incoming irradiance over a small
area, the surface reflection, L, at nadir could be avoided
without affecting L, (Fig. 2). Since upwelling radiance from
under the water surface at any given point or small area is



generated by the light intercepting water at all different angles
in a larger surrounding area, blocking of light coming at nadir
over a small area will not affect L,. Therefore, the main
assumption used in the experimental setup was that if the light
coming at nadir is blocked, the nadir-oriented sensor will
receive only volume reflection, L.

Since the downwelling and upwelling radiances have a
hemispherical distribution, the radiance and reflectance mea-
surements are usually made at specific zenith angles, at which
the sensor is oriented. In this study, the sensor was oriented at
nadir; therefore, the zenith angle was zero for all measure-
ments. The surface reflected radiance, L., was calculated as the
difference between total upwelling water radiance and volume
reflection (Eq. 3).>7 The total upwelling water radiance was
measured directly above the water surface without blocking the
downwelling radiation at nadir. The CF or ps was calculated as
the ratio of L, to L as shown in Eq. 1. The contribution of L, to
the total upwelling radiance, L., is calculated as the ratio
between the two (Eq. 4). The total water-body reflectance,
which was the ratio of the total upwelling radiance to the total
downwelling radiance above water surface, was calculated
using Eq. 5, while volume reflectance of water was calculated
with Eq. 6. The error introduced by L, in the measured water
reflectance was calculated as the ratio of L, to L, (Eq. 7).

c= % % 100 4)

Py = n% X 100 (5)

Py = nLLVd X 100 (6)

epr—vva 100=54 _VLV X 100:2-1>< 100 (7)

where the variables are as follows:

¢ = Contribution of L, to total upwelling radiance above
water surface at a specific zenith angle, %

L4 = Total downwelling radiance at a specific zenith angle,
W m~2 sterdian™!

pw = Total water-body reflectance at a specific zenith angle,

ratio

p, = Volume reflectance of water at a specific zenith angle,
ratio

e = Error in measured water volume reflectance caused by

surface reflection, %.

Tank Experiments and Data Collection. The study was
conducted at the Arkansas Agricultural Experiment Station
facility at Fayetteville (36.0999348 N, 94.175325 W). The
experimental setup consisted of a rectangular tank (2.44 m
length X 1.83 m width X 0.61 m height), with bottom and sides
painted black, which resulted in a wall reflectance of less than
2%. The tank was filled with clear tap water up to 0.33 m
depth. Three arms were fitted on the tank, two for holding two
optical sensors, and the third one for holding a small metal
sheet, painted black (Fig. 3). The 0.3 m X 0.3 m metal sheet
was used to block the downwelling radiation coming at nadir to
the water surface at the point of measurement. The metal plate
was mounted 0.61 m above the water surface, causing the

downwelling light at a solid angle of 23° to be blocked with
respect to the view area.

The data collected included radiances L, Ly, L4, Ls, wind
velocity, and sun altitude. Radiances were measured with a
portable ASD Field Spec Pro Dual VNIR spectro-radiometer
(Analytical Spectral Devices, CO). The spectro-radiometer had
two sensors simultaneously measuring radiance in 512 bands in
the Vis-NIR range of 350-1050 nm. The two sensors were
referred to as reference and target sensors, with the target
sensor measuring the upwelling radiance from the water body
and the reference sensor measuring the downwelling radiance
simultaneously. The downwelling radiance was measured as
the light reflected by a reference (Spectralon®) panel that had a
98% reflectance in the 400-1000 nm range. The measured
reflectance was adjusted for the reflectance of the Spectralon®
panel to obtain the downwelling radiance. When no metal sheet
was blocking the downwelling radiance at nadir, the radiance
measured by the target sensor was L, and the radiance measured
by the reference sensor was Lg. When the black metal sheet was
placed above the sensors to block the downwelling radiance at
nadir, the target sensor recorded L, while the reference sensor
recorded L. The target sensor had a 8° field of view (FOV), and
the reference had a 25° FOV. The target sensor was mounted at
0.3 m above the water surface, resulting in a view area of 14
cm?. The reference sensor was mounted at 3 cm above the
reference panel, resulting in a view area of 1.4 cm?.

Wind speed was recorded during the data collection period
with a hand-held anemometer (kestrel#1000, Kestrel Inc.,
Sylvan Lake, MI) mounted 1 m above the water surface. Sun
altitude data for Fayetteville were obtained from the US Naval
Lab (http://aa.usno.navy.mil/data/docs/AltAz.htmlusnaval.
gov). Data were collected on five different dates (September
25, October 20, November 8, and December 8 and 9) in 2006,
and one day (May 19) in 2007, under clear sky conditions. On
each date, 14 to 16 complete sets of observations were
collected between 10:30 a.m. and 2:30 p.m. at 15 min intervals.

Artificial Neural Network Model Development. An
artificial neural network (ANN) is a parallel distributed
processing unit that works similar to the human brain’s neural
network system.!? Data driven models such as ANN have the
capability to develop a numerical relationship between a set of
inputs and outputs without any prior understanding of the
system. This was a major advantage in using the ANN as a
modeling tool for representing the highly complex and
nonlinear relationship of CF with sun altitude, diffuse light,
wind speed, and wavelength in this study.

In this study, a feed-forward multilayer perceptron (MLP)
network was used for the development of the model.!3 In an
MLP network the processing units or neurons are arranged in
layers and the information flows forward from the input to
output layer through connections between neurons in succes-
sive layers. Each connection has a weight associated with it.
The inputs from the previous layer coming to a specific neuron
are scaled by the respective connection weights and bias of the
neuron, and then they are transformed into an output value of
the neuron using the processing or activation function of the
neuron. The four inputs into the model included sun altitude,
diffuse light, wind speed, and wavelength, which were selected
based on past research indicating their influence on CF. The
model output was CF. The activation functions used were log-
sigmoid at the first hidden layer, tan-sigmoid at the second
hidden layer, and pure linear at the output layer.
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Fic. 3. Experimental setup developed at the University of Arkansas at Fayetteville for measuring upwelling water volume reflection without the surface reflected

radiance.

For modeling, only wavelengths at 9 nm intervals within the
range of 400-1000 nm were considered, resulting in 68
wavelengths. The complete set of data collected over six dates
in 68 wavelengths included 6188 observations. These obser-
vations were divided into three groups of training, validation,
and testing data. The data were organized by the time of data
collection. A structured method that is commonly used in ANN
model development was used to divide the data into the three
groups. Every fourth observation was chosen for validation,
every fifth observation for testing, and observations 1-3 for
training the model. Thus, 3712 data points were used for
training, 1238 for validation, and 1238 for independent testing
of the model. The descriptive statistics of the three groups of
data showed that they were comparable, with similar mean,
standard deviation, and range for all variables (Table I). It
should be noted that the data obtained in this study had a
different range compared to the data used by Mobley.* The
difference in experimental setup, water used, sensor orienta-
tion, and the location of the study all have contributed to this
difference in the range of variables.

Error back propagation is a common method used for
training feed-forward MLP networks. The automated regular-
ization back propagation algorithm!# available in Matlab (The
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TABLE 1. Descriptive statistics of the observed input variables (sun
altitude, diffuse light conditions, wavelength, and wind speed) and output
(correction factor) used for the ANN model development.

Sun altitude  Diffuse ~ Wavelength Wind Correction
(degrees) light (nm) speed (m/s) factor

Training

Min 20.60 0.00196 400.0 0.8 0.0025

Max 73.70 0.4456 1000.0 6.8 0.139

Mean 41.17 0.07144 701.5 34 0.019

Stdev 13.50 0.05653 176.7 1.3 0.017
Validation

Min 20.60 0.00196 400.0 0.8 0.003

Max 73.70 0.41030 1000.0 6.8 0.121

Mean 41.15 0.07138 701.5 34 0.019

Stdev 13.50 0.05667 176.7 1.3 0.017
Testing

Min 20.60 0.00196 400.0 0.8 0.003

Max 73.70 0.37540 1000.0 6.8 0.127

Mean 41.19 0.07137 701.5 34 0.018

Stdev 13.51 0.05651 176.6 1.3 0.017




Mathworks, Inc., Natick, MA) was used for training the model.
Automated regularization training works on the basis of a
Bayesian framework.'* This training algorithm tries to
minimize the sum of square error (SSE) and updates weights
and biases after each simulation of the network. Advantages of
the backpropagation automated regularization training algo-
rithm include high level of accuracy, reliability due to the
probability based algorithm, less risk of over-fitting, simplicity
in implementation, and capability to estimate the effective
number of parameters affecting the model.'# Training stopped
when the stop criteria of either the number of epochs of 2100
(selected based on trial and error), or a SSE of 10~* was
reached.

The ANN model was optimized for the number of neurons in
the hidden layer and the number of hidden layers in the
network using a trial and error procedure. Performance of the
model during optimization was tracked with the root mean
square error (RMSE) and R? values on validation data. Model
optimization started with one hidden layer with a minimum of
one neuron. The numbers of neurons were systematically
increased by one, in each successive run, till a satisfactory
performance of the model was attained. This method identified
16 neurons in the hidden layer as the best, which resulted in an
R? value of 0.98 and RMSE of 0.0001. However, the rule of
thumb for optimization procedures is that the number of
neurons in a hidden layer should not exceed twice the number
of inputs.!> Therefore, the number of neurons in a hidden layer
should not exceed 8 since there were 4 inputs. Since model
performance was relatively poor with 8 neurons in the hidden
layer, a second hidden layer was added. The model was again
optimized for the number of neurons in both the hidden layers.
The model with two hidden layers containing 4 and 3 neurons,
respectively, provided the best model performance, indicated
by an R? value of 0.96 and RMSE of 0.0001.

The optimized model was trained with the training data
while tracking the performance on the validation data in order
to avoid over-fitting. Model training is a structured iterative
process to identify the best set of values for the model
parameters that minimizes the prediction error. In an ANN
model, the model parameters include connection weight
between the neurons, and the biases of each of the neurons.
The fully trained model establishes a complex nonlinear
relationship between the inputs and the output using the best
set of weights and biases. The overall performance of the fully
trained ANN model was evaluated on the independent test data
set based on its predictive power measured as Nash—Sutcliff
efficiency (R%g) of the model,'® in addition to the R? value and
RMSE.

A sensitivity analysis was conducted to evaluate the effect of
the four input variables on CF. The sensitivity of each input
variable was assessed as a relative contribution of that variable
to the prediction of the output. The connection weights
between the neurons along the path from a specific input to
the output layer can explain the relative importance of each
variable in the model. Therefore, the sensitivity of an input was
calculated as the weighted cumulative sum of connection
weights between neurons connecting that input to the output,
using Eq. 8.!7 This method of sensitivity analysis is only valid
for ANN models. Biases were not considered in the sensitivity
analysis procedure since the connection weights are multipli-
cative terms and biases are additive terms for an input. Also,
the connection between the neurons facilitates the flow of

information in a back-propagation network. Garson!’ also

advised partitioning the connection weights rather than biases
for sensitivity analysis.

NH| .

Z mlw H1;0,
=1 Zl"i

where the variables are as follows:

S+ = Sensitivity of an input in predicting the output, %

ny; = Number of neurons in the first hidden layer, number

I,; = Weights connecting the i input to the first hidden
layer, unitless

ny = Number of input variables, number
i = Inputs in the input layer, number
j = Nodes in the hidden layers, number

H;; = Weights connecting the first to the second hidden
layer, unitless

0O, = Weights connecting the second hidden layer to the
output layer, unitless

RESULTS AND DISCUSSION

Surface Reflection from Water. The L, which is the
radiance reflected from the air—water interface at nadir, ranged
from 0.00001 to 0.0048 W m~2 sterdian—! for the six days of
data collection (Table II). The daily mean L, was the highest on
19 May 2007 and lowest on 8 December 2006. The reason for
the high L, on 19 May 2007 may be the high sun altitude,
which reached the highest value of 73.7° that day at the
experiment location. Similar observations were made by
Doxaran et al. (2004) and Austin (1974) that high sun altitudes
dramatically increased the L,. The L, accounted for a daily
mean of 5 to 65% of the total upwelling radiance in the
wavelength range of 400 to 1000 nm (Fig. 4). The daily mean
errors introduced by L, in the measured water volume
reflectance varied from 20-54%, which shows the importance
of and need for removing L, from above-water radiometric
measurements. There was significant variation in the contribu-
tion of L, to total upwelling radiance throughout the Vis-NIR
region. In the visible range of 400—700 nm, the daily mean L,
contribution gradually decreased from the highest range of 24—
35% at 400 nm to the lowest range of 5—17% at 700 nm. In the
NIR region, the daily mean L, contribution increased from the
lowest range of 5—-17% at 700 nm to a local peak of 15-30% at
750-760 nm, and then decreased to 10-24% at 815 nm,
followed by a steep increase up to 920 nm.

Although the average L, was the highest on May 19, 2007
(Table II), the relative contribution of L, over the NIR
wavelengths did not follow this trend (Fig. 4). The mean daily
contribution of L, to the total upwelling radiation in the 820—
1000 nm range on 19 May 2007 was comparable to the data
from 9 December 2006, with both values significantly lower
than that for the four remaining days of data collection. On
both of these dates, the highest mean daily contribution of L, in
the NIR range was 33%, compared to the 50-65% observed on
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TABLE II. Summary of daily variation in measured variables such as surface reflected radiance (L,), correction factor (p), diffuse light condition (ratio
of downwelling diffuse radiance to total downwelling radiance), sun altitude (SA), and wind speed (WS) during the six days of tank experiment with tap

water under clear sky conditions.

Variable Date Mean Std. dev Min Max
Surface reflected radiance, L, (W m~2 sterdian—') 9/25/2006 0.00036 0.00035 0.00002 0.00143
10/20/2006 0.00037 0.00036 0.00001 0.00143
11/8/2006 0.00026 0.00029 0.00001 0.00113
12/8/2006 0.00013 0.00014 0.00001 0.00057
12/9/2006 0.00020 0.00022 0.00001 0.00089
5/19/2007 0.00129 0.00103 0.00006 0.00477
Correction factor, CF, or surface reflectance, ps (ratio) 9/25/2006 0.0148 0.0043 0.0075 0.0278
10/20/2006 0.0163 0.0060 0.0065 0.0512
11/8/2006 0.0135 0.0042 0.0056 0.0269
12/8/2006 0.0070 0.0022 0.0025 0.0127
12/9/2006 0.0122 0.0087 0.0030 0.0521
5/19/2007 0.0526 0.0258 0.0130 0.1391
Diffuse light condition (ratio) 9/25/2006 0.0603 0.0421 0.0196 0.2439
10/20/2006 0.0810 0.0596 0.0257 0.3479
11/8/2006 0.0818 0.0645 0.0242 0.3755
12/8/2006 0.0934 0.0768 0.0244 0.4040
12/9/2006 0.1028 0.0759 0.0290 0.4456
5/19/2007 0.0692 0.0353 0.0314 0.2211
Sun altitude, SA (degrees) 9/25/2006 49.6 3.2 42.6 52.9
10/20/2006 39.2 5.0 27.3 43.5
11/8/2006 29.0 2.2 24.1 31.2
12/8/2006 28.7 24 24.1 31.2
12/9/2006 28.1 33 20.6 31.1
5/19/2007 68.0 6.0 56.6 73.7
Wind speed, WS (m s~ 1) 9/25/2006 1.9 0.6 1.1 34
10/20/2006 32 1.1 0.8 52
11/8/2006 4.6 1.1 2.5 6.8
12/8/2006 3.6 0.9 2.0 4.3
12/9/2006 52 0.9 3.5 6.7
5/19/2007 34 0.5 2.5 4.2

the remaining days. The reason for the relatively lower
contribution of L, in the NIR region on these two dates is not
known with the limited data we have recorded. These two days
were not similar in environmental conditions monitored (Table
II). The diffuse radiance and wind speed were the highest, and
sun altitude was the lowest on Dec. 9, whereas, the sun altitude
was the highest, and the diffuse lighting and wind speed were
below average, on May 19.

Correction Factor. The correction factor (CF) or ps
estimated from radiance data collected at 15 min intervals
over six days varied from 0.0025 to 0.130 with a mean of 0.019
and standard deviation of 0.017 in the Vis-NIR wavelength
range of 400 to 1000 nm (Table I). The coefficient of variation
of the CF, calculated as the ratio of the standard deviation to
the mean, was 0.92, which indicates that there was a high
amount of variability in CF for the six days of data collection.
The mean daily CF was slightly less than 0.02 recommended
by Austin,!! except for May 19 (Table II). One reason for the
relatively smaller value of CF for the five dates may be the
difference in how wind affected the water surface in a tank
experiment. The surface roughness created on the water surface
by similar wind speeds could be relatively less in a tank
experiment compared to open and vast water bodies.
Additionally, the wind velocity was measured approximately
1 m above the water surface. Therefore, the actual wind speed
at the water surface could have been relatively smaller than the
measured values.

The daily mean CF was compared to the value suggested by
Austin!! with Z-tests. The null hypothesis for the Z-test was
that the daily mean of CF is equal to 0.02 as suggested by
Austin.'" The null hypothesis was rejected for each day of data
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collection, which implies that the daily mean CF found in this
study was significantly different from 0.02. Although the six-
day average of CF was close to 0.02, the daily mean CF was
significantly lower than 0.02 on five dates. On May 19, the
mean CF was 0.05, which was significantly higher than 0.02 (P
< 0.05). Therefore, a constant CF of 0.02 will cause significant
over or under estimation of L., as suggested by Doxaran et al.’
It should be noted that a CF of 0.02 was suggested for calm
marine water systems for a nadir sensor viewing geometry
when the sun altitude and sun glint were low.!? The conditions
used in this study (fresh water in a tank) were very different
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Fic. 4. Mean daily contribution of surface reflected radiance (L;) to total

upwelling water radiance (L) calculated as (L,/L;) X 100, for data collected
from a tank filled with tap water on six different days.
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Fic. 5. Variation of mean daily correction factor with respect to wavelength
on six different days of data collection between 10:30 a.m. and 2:30 p.m. for a
tank of fresh water.

from those suggested by Arst et al.'?> Additionally, all
environmental variables such as sun altitude, wind velocity,
and diffuse light conditions in this study had considerable
variability since the data were collected on six different days
spread across nine months.

In general, the daily mean CF gradually decreased from 400
nm to 1000 nm, with a relatively sharp decrease in the 700 to
800 nm region (Fig. 5). The one exception to this trend was the
data from May 19. On this date, the CF slowly increased from
0.046 at 400 nm to 0.06 at 690 nm. Additionally, CF showed
higher variability within the visible wavelengths on May 19,
compared to the other five days. The variations in CF over the
visible wavelengths were comparatively small on all five dates
except for May 19. Generally, the CF was much higher at
visible wavelengths than at NIR wavelengths, with the
exception of May 19. On May 19, the entire Vis-NIR region
had comparable values of CF.

The daily mean CF was the highest on May 19 and the
lowest on December 8 on all wavelengths in the 400—1000 nm
range. The significantly high sun altitude on May 19 is the
reason for the high CF on this date. While the sun altitude
remained below 53° for the five other days of data collection, it
varied from 56.6° to 73.7° on May 19. Other factors such as
wind velocity and diffuse lighting conditions on May 19 were
comparable to the other five days. A comparison of the CF
from December 8, when the CF was the lowest, to that of
December 9, an adjacent day, indicated large differences. The
CF for December 9 was approximately twice as much as the
CF for December 8 at all wavelengths. Both days were clear
days with similar diffuse light conditions, with a mean of 0.09
and 0.10 (Table II). Being adjacent days, the sun altitudes were
also very similar, with means of 28.7° and 28.1° respectively
on December 8 and 9. Therefore, sun altitude and diffuse light
were ruled out as possible causes of the observed differences in
CF. The remaining factor, wind speed, was significantly
different on these two days and was attributed as the reason for
the large differences in CF. The average wind speed was 3.6 m
s~! on December 8, with a range of 2-4.3 m s~!. On December
9, the average wind speed was 5.2 m s~ with a range of 3.5—
6.7 m s~!. This result suggests that a 45% increase in wind
speed can cause the increase of the CF by approximately 100%.

Figure 6 shows the variation of CF with respect to sun
altitude and diffuse light conditions at two visible wavelengths
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Fic. 6. Sample 3D mesh plots of diffuse light (DL), sun altitude (SA), and
correction factor (CF) for data collected on six days at sample wavelengths of
(a) 400 nm and (b) 500 nm.

of 400 nm and 500 nm. In general, the CF increased in a highly
nonlinear fashion with respect to sun altitude and diffuse light
at both sample wavelengths. A combination of the high sun
altitude of above 40° and high diffuse light of above 0.25
resulted in sharp increases in the CF. Although the trend of CF
with respect to sun altitude and diffuse light were somewhat
similar, the specific patterns of the three-dimensional curve
were very different at these two sample wavelengths. Similar
nonlinear patterns were also observed between wind speed, sun
altitude, and CF.

Artificial Neural Network Model Performance. The ANN
model simulating CF from sun angle, wind velocity, diffuse
light, and wavelength performed very well under both training
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Fic. 7. Correction factor predicted by the trained ANN model plotted against
observed values for an independent test data set.

and testing. The accuracy of the simulated CF was very high,
which was indicated by a low RMSE of 0.0032 under training,
validation, and testing. The ANN model was able to explain
96% of variability in CF in both the testing and validation data,
and 97% of variability in CF in the training data. The tight
distribution of the simulated CF with respect to the measured
CF data around the 1:1 curve, and the high correlation between
the simulated and measured CF (R? = 0.96), also indicated the
superior performance of the ANN model (Fig. 7). The model
also exhibited very high predictive power or efficiency, which
was indicated by an R%g of 0.96 for test and validation data,
and 0.97 for training data. A model with an R%g of unity is
considered as 100% efficient in simulating the output variable.

With this ANN model, it would be relatively simple to
estimate a highly accurate value of CF if the values of the four
input variables are known. For any given location, it is simple
to obtain the sun altitude values for any time of the day from
the US Naval Lab. Wind speed data can be obtained from local,
state, or federal agencies for established weather stations. Since
wind speed typically shows high spatial variation, the best
method for accurate measurement is to install multiple
continuously recording anemometers distributed within the
area of interest. If that is not practically possible, it is advisable
to obtain the wind speed data from the closest possible weather
station. The diffuse lighting condition would be the only other
variable that needs to be measured. It can be easily measured in
specific wavelengths with a hand-held spectro-radiometer. This
study used fresh water stored in a tank to develop the basic
understanding prior to conducting actual field tests. Since the
ANN model worked extremely well for the data from the tank
study, we expect this model to perform well with field data.
This type of model would be easy to develop and implement
for actual field data and hence offers an inexpensive and fast
solution for estimating CF and L,.

Input Sensitivity Analysis. A sensitivity analysis was
performed with the calibrated and validated ANN model for
estimating CF. The sensitivity analysis ranked the input
variables based on their sensitivity or relative contribution to
the output. Sun altitude and wind speed had the highest
sensitivities of 46.4 and 36.1%, respectively, contributing to
over 82.5% of the total predictive ability of the model. Diffuse
light had a sensitivity of 14.5%, followed by wavelength with
the lowest sensitivity of 2.65%. Although the contribution of
wavelength to the predictive ability of the model was relatively
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low, it is important to include wavelength as a variable since
the CF showed significant variability between visible and NIR
wavelengths at low sun altitude, and high variability within the
whole range of 400—1000 nm under high sun altitudes (Fig. 5).
Additionally, the sensors used for remote sensing operate at
specific wavelength ranges. Therefore, knowledge of CF at
specific wavelengths or wavelength regions can improve the
accuracy.

The ANN model developed for tank water was successful in
simulating the CF as a function of sun altitude, diffuse light
conditions, wind speed, and wavelength. ANN based models
are data-driven models and might not work efficiently outside
the training range of input data. This model was trained for a
sun altitude range of 20.6° to 73.7°, which is typical for
Fayetteville in Arkansas. Although sun altitude can be as high
as 87° for the southern/southeastern United States, such as
Texas and Florida, in the month of June, the maximum sun
altitude in the rest of the US including Arkansas is
approximately 77°. Therefore, the range considered in this
study was representative of most of the regions in the US. The
wind speeds ranged between 0.8 and 6.7 m/s during the 6 days
of data collection, which is relatively low considering potential
wind speeds over open water bodies at this location. It would
be possible to retrain the model with additional data collected
at higher wind speeds and run it under an extended range of
wind speeds. The wind speed was measured at 1 m above the
water surface, which may have been an over-estimation of the
actual wind speed at water surface. This is especially true for a
tank experiment since the walls of the tank covered and
protected the water surface from wind somewhat. This model
was developed for data measured with the sensor oriented at
nadir and may not accommodate other sensor geometries.

A potential limitation of the model was the assumption of the
smooth water surface, which was only possible under low
surface roughness conditions. The ripples or waves created by
the high wind speed, as well as excessive amount of optically
active constituents at the surface, can create more diffuse
reflectance conditions. The model was developed for clear
unfiltered tap water, which had very low OAC compared to
fresh water bodies or marine water systems. High levels of
OAC can change the surface roughness and behavior of the
air—water interface. Therefore, it is possible that the L, and,
hence, the CF obtained in this study are underestimations of
actual CF for field conditions or fresh water bodies. This
controlled study was conducted to understand the dynamics of
L, and CF on a relatively calm and smooth water surface.

CONCLUSION

A new approach was developed for removal of surface
reflection from total water body reflection in above-water
radiance measurements at nadir. With this new approach, the L,
can be easily removed by directly measuring the radiance
coming from under the water surface at nadir. The L, measured
from clear tap water maintained in a tank contributed 5—65% of
the total upwelling radiance, resulting in 20-54% of error in the
measured above-water reflectance. The surface reflectance or
CF showed large variability with a mean of 0.019 and
coefficient of variation of 0.92 for the six days of data
collection. The CF decreased with wavelength at low sun
altitudes and exhibited a highly nonlinear relationship with sun
altitude, diffuse light, and wind speed. Both wind velocity and
high sun altitude dramatically increased the CF.



The CF was modeled on sun altitude, diffuse light, wind
speed, and wavelength with ANN, a data-driven model
framework. The model was very successful in simulating CF,
which was indicated by the high accuracy (RMSE = 0.003),
strong predictive ability (R%g = 0.96), and large amount of
variability (R? = 0.96) in the CF explained by the model for a
test data set. Sensitivity analysis of the ANN model showed
that sun altitude and wind speed were the two most sensitive
parameters affecting the predictability of CF. Together, they
accounted for 82.5% of the model’s predictive capability.
Wavelength contributed less than 3% of the model’s
predictability. The study revealed how the experimental
approach can be applied for obtaining CF with high accuracy
for specific combinations of wavelength, sun altitude, wind
velocity, and diffuse light for a nadir sensor view geometry by
using an ANN-based modeling tool. If retrained with actual
field data, the model is expected to perform well in predicting
correction factors for actual field conditions with high
accuracy, thus avoiding tedious field measurements.
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